LOS ALAMOS, N.M. – May 14, 2013 Today, Los Alamos National Laboratory announced that for the first time, irradiated low-enriched uranium (LEU) fuel has been recycled and reused for molybdenum-99 (Mo-99) production, with virtually no losses in Mo-99 yields or uranium recovery.This demonstrates the viability of the separation process, as well as the potential for environmentally- and cost friendly fuel recycling. Medical isotope production technology has advanced significantly, now that scientists have made key advances in separating Mo-99 from an irradiated, LEU solution.
Technetium-99m (Tc-99m) is the most commonly used medical isotope today, accounting for about 50,000 medical imaging procedures daily in the United States. Tc-99m is derived from the parent isotope Mo-99, predominantly produced from the fission of uranium-235 in highly enriched uranium targets (HEU) in aging foreign reactors. The North American supply of Tc-99m was severely disrupted when the Chalk River nuclear reactor in Canada experienced an outage several years ago.
The National Nuclear Security Administration’s Global Threat Reduction Initiative (CTRI) implements the long-standing U.S. policy to minimize and eliminate the use of HEU in civilian applications. In support of this objective, CTRI is working with U.S. commercial entities and the U.S. national laboratories to develop a diverse set of non-HEU-based technologies to produce Mo-99 in the United States. The U.S. national laboratories aid GTRl’s programmatic mission by conducting research and development, engineering and design support, and proof of concept demonstrations. Towards this goal, GTRI has been working with Los Alamos to ensure it’s technical expertise is available to support GTRI’s commercial partners, including Morgridge Institute for Research – SHINE Medical Technologies (MIR-SHINE), which proposes to use a particle accelerator to produce Mo-99 from mildly acidic LEU solution.
In support of MIR-SHINE’s Mo-99 production efforts, researchers at Los Alamos have successfully proven the technical viability of the initial stage of Mo-99 recovery from LEU solution through a direct scaled-down demonstration of the proposed industrial process.
To undertake the necessary experimental validation, Los Alamos researchers developed methodologies for preparing and analyzing uranium sulfate fuel, safely containing the fuel during irradiation at a Los Alamos Neutron Accelerator Science (LANSCE) facility and performing chemical flow-sheet testing, using a separation flow-sheet designed by Argonne National Laboratory. The separation apparatus developed at LANL was designed to be applicable to both low and high levels of radiation.
With a short half-life of 2.7 days, Mo-99 is a high specific radioactivity isotope. At production scale, the post-fission solution will contain only a very small concentration of Mo-99. Unlike traditional HEU-based processes, the challenge is to recover this material from a vast excess of LEU and leave the uranium in the same chemical form to allow for recycle.
The team found that nearly all of the uranium could be recovered after Mo-99 separations were performed. The LEU fuel that passed through the column separation process was irradiated again, and then once more the fission-generated Mo-99 was separated in high yield. When the same fuel was irradiated a third time, there was still no observable loss in the subsequent Mo-99 recovery. The results confirm the viability of both the Mo-99 separation process and uranium fuel recycling, which can lower operating costs and minimize waste generation.
Los Alamos has a long tradition of producing radioisotopes for medical, industrial, environmental, national security and research applications. The Los Alamos team has now developed a wide suite of new capabilities and is poised to serve the GTRI mission for present and future applications.
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.
Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.
Mary Ambrosiano, Communications Office LANL, 505-667-0471
Based in Janesville, Wisconsin, SHINE deploys its safe, cost-effective and environmentally friendly fusion technology in a stepwise approach. Its systems are used to inspect industrial components in aerospace, defense, energy and other sectors. SHINE’s proprietary medical isotope production processes create non-carrier-added lutetium-177 and are expected to create molybdenum-99. In the future, SHINE plans to scale its fusion technology to help solve one of energy’s toughest hurdles by recycling nuclear waste. Through a purpose-driven and phased approach, SHINE aims to generate fusion power to deliver clean, abundant energy that could transform life on Earth. Want to learn more about SHINE? Follow us on social media @shinefusion and sign up for our email newsletter to follow us on our journey!
Media Contact: info@shinefusion.com